R. Thomas' Modeling of Biological Regulatory Networks: Introduction of Singular States in the Qualitative Dynamics

نویسندگان

  • Adrien Richard
  • Jean-Paul Comet
  • Gilles Bernot
چکیده

In the field of biological regulation, models extracted from experimental works are usually complex networks comprising intertwined feedback circuits. The overall behavior is difficult to grasp and the development of formal methods is needed in order to model and simulate biological regulatory networks. To model the behavior of such systems, R. Thomas and coworkers developed a qualitative approach in which the dynamics is described by a state transition system. Even if all steady states of the system can be detected in this formalism, some of them, the singular ones, are not formally included in the transition system. Consequently, temporal properties in which singular states have to be described, cannot be checked against the transition system. However, steady singular states play an essential role in the dynamics since they can induce homeostasis or multistationnarity and sometimes are associated to biological phenotypes. These observations motivated our interest for developing an extension of Thomas formalism in which all singular states are represented, allowing us to check temporal properties concerning singular states. We easily demonstrate in our formalism the previously demonstrated theorems giving the conditions for the steadiness of singular states. We also prove that our formalism is coherent with the Thomas one since all paths of the Thomas transition system are preserved in our one, which in addition includes singular states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Biological Regulatory Networks with Singular States

In the field of biological regulation, models extracted from experimental works are usually complex networks comprising intertwined feedback circuits. R. Thomas and coworkers introduced a qualitative description of such regulatory networks, then they used the concept of circuit-characteristic states to identify all steady states and functional circuits. These characteristic states play an essen...

متن کامل

Modeling gene regulatory networks: Classical models, optimal perturbation for identification of network

Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption.  On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications.  This is not an unrealistic goal since genes which are regulated by gene regulatory ...

متن کامل

Relating Attractors and Singular Steady States in the Logical Analysis of Bioregulatory Networks

In 1973 R. Thomas introduced a logical approach to modeling and analysis of bioregulatory networks. Given a set of Boolean functions describing the regulatory interactions, a state transition graph is constructed that captures the dynamics of the system. In the late eighties, Snoussi and Thomas extended the original framework by including singular values corresponding to interaction thresholds....

متن کامل

On the conversion of multivalued gene regulatory networks to Boolean dynamics

We consider the modeling approach introduced by R. Thomas for the qualitative study of gene regulatory networks. Tools and results on regulatory networks are often concerned only with the Boolean case of this formalism. However, multivalued approaches are sometimes more suited to model biological situations. Multivalued networks can be converted to partial Boolean maps, in a way that preserves ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fundam. Inform.

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2005